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Quantum mechanics of charged-particle beam transport through magnetic lenses
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The quantum theory of charged-particle beam transport through a magnetic lens system with a
straight optic axis, at the level of single-particle dynamics and disregarding spin (or, when nonzero,
assuming it to be an independent spectator degree of freedom), is presented, based on the Schrodinger
and Klein-Gordon equations in a form suitable for analyzing the paraxial and aberration aspects in
a systematic way using a Lie algebraic approach. In the classical limit, the well known Lie algebraic
treatment of the corresponding classical theory is obtained. As examples, quadrupole and axially
symmetric magnetic lenses are considered. An extension of the theory to the cases of electrostatic
and other electromagnetic lens systems is outlined. This work is complementary to an already
known similar approach to the spinor electron optics based on the Dirac equation and provides the
corresponding framework when the optics of charged particles, with or without spin, is described
with scalar wave functions in the nonrelativistic and relativistic situations.

PACS number(s): 41.85.Ja, 41.85.Lc, 41.75.—i, 03.65.—w

I. INTRODUCTION

Optics of charged-particle beams, or the theory of
transport of charged-particle beams through electromag-
netic systems, is traditionally dealt with using classical
mechanics; this is so in electron microscopy, ion optics,
accelerator physics, etc. (see, e.g., [1-4]). Of course, in
Glaser’s theory of electron optical imaging process non-
relativistic quantum mechanics forms the basis [5] (see
[6] for a recent, detailed account of the quantum mechan-
ics of electron optics). The Dirac equation, the proper
equation for the electron, was used in the study of diffrac-
tion of “electron waves” by Rubinowicz [7] and Van Loc
[8]. Conditions under which the application of the Dirac
equation can be approximated by the use of the Klein-
Gordon equation, treating spin as a spectator degree of
freedom, in an extension of Glaser’s formalism to the rel-
ativistic electron microscopy, have been studied in detail
by Ferwerda, Hoenders, and Slump [9]. Quantum the-
ory of electron optics entirely based on the Dirac equa-
tion, at the level of single-particle dynamics, has been
under development recently [10-12]. A path integral ap-
proach to the spinor electron optics has also been pro-
posed [13]. The approach initiated in [10] and [11] for
treating the optics of Dirac electrons is essentially alge-
braic and is suitable for adopting the Lie algebraic tech-
niques pioneered by Dragt et al. for the classical the-
ory of charged-particle beam optics (see, e.g., [14] and
[15]). The purpose of this article is to present a similar
algebraic approach for the quantum theory of charged-
particle beam optics based on the Schrédinger and Klein-
Gordon equations, at the level of single-particle dynam-
ics, for the case when the spin is disregarded (or, in other

*Electronic address: khan@imsc.ernet.in
tElectronic address: jagan@imsc.ernet.in

1063-651X/95/51(3)/2510(6)/$06.00 51

words, assumed, if nonzero, to be an independent spec-
tator degree of freedom). Here we are dealing mainly, in
detail, with magnetic lens systems having straight optic
axis and, as examples, quadrupole and axially symmetric
magnetic lenses are considered. Corresponding aspects
of the spinor electron optics [10-12] are also recalled at
the end by way of comparison. An extension of the the-
ory to electrostatic and other electromagnetic lenses is
outlined briefly. The work presented in this paper is
essentially complementary to the spinor electron optics
[10-12], dealing with relativistic electron optics using an
algebraic framework, and corresponds to a similar alge-
braic treatment of the quantum mechanics of the optics
of charged-particles, with or without spin, described with
scalar wave functions in the nonrelativistic and relativis-
tic situations.

Recently a formal quantum theory of charged-particle
beam optics has been developed with a Schrodinger-like
basic equation in which the beam emittance plays the
role of % (see [16] and references therein). The formal-
ism we are developing is the canonical quantum theory
of a charged-particle in an electromagnetic field suitably
adapted to deal with beam propagation problems at the
single-particle level.

II. OPTICAL FORM
OF THE NONRELATIVISTIC
SCHRODINGER EQUATION

The nonrelativistic Schrodinger equation for a particle
of charge ¢ and mass m moving in a static electromag-
netic field with potentials (¢(r), A(7r)) is

(it —a¢) w0
- % {fri + (—iﬁ(% - ‘iAz)z} U(r,t), (2.1)
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where #, = p, — (¢/c)AL and 7% = @2 + &2 with
P, = —thV . Let the optical element (i.e., the sta-
tionary electromagnetic field) through which the charged-
particle beam propagates have a straight optic axis along
the z direction and be situated, for all practical purposes,
in the region z;; < 2 < zout- Then we are interested in
the evolution of the beam parameters along the z direc-
tion. Further, we are dealing with the scattering states of
the system comprising of a time-independent field. The
relevant wave function ¥ obeying Eq. (2.1) and repre-
senting an almost paraxial quasimonoenergetic beam of
particles moving through the system along the +z axis,
with constant positive energy [~ E (po)], should be such
that

Po+Ap i
U(r) ,z < Zip,t) = / dp exp [——E(p)t]
Po—Ap h

xP(r1,z < zin;p), Ap <K Po

Y (r1,z < zin;p) = / d’p. c(p)exp (%p . 1') ,

p = (pi,+\/p2—pi) ,

E(p) =

il

Yt (2:2)

p=1pl, IpLI<p,
where z < z;, corresponds to the field-free input region.
We have to relate U(r 1,z > zout; t), the wave function in
the output (field-free) region of the system, to the input
wave function ¥(r ),z < zjn;t). If we have a relation of

the type
P(ry,2";p) = G(2", 2 ;p)¢(rL,2';p)

for the time-Fourier component ¥ (v, z;p) of ¥(r_, 2,t),
then we can write

(2.3)

T(ry,2" > zout,t)
o+Ap .
= / dpG(2",2";p)¥(r1,2' < zin;D)
0 —Ap

X exp [—%E(p)t] . (2.4)

In the practically monoenergetic case (Ap =~ 0) we would

have

G(2",2';p0)¥(r L, 2 < zin,t).
(2.5)

\I,(r_va” > zoutyt) ~

To obtain the z propagator G(z”,2;p) for ¥(z;p) de-
fined by Eq. (2.3) we have to integrate for the z evo-
lution the time-independent nonrelativistic Schrédinger
equation

2
{fri + (—ﬂi-a-a; - gAz) —pz} P(ri,z;p) =0, (2.6)

where p? = 2m(E — q¢). We shall consider magnetic
systems for which, with ¢ = 0 in the lens region, p =

2511
v2mkE is a z-independent constant. Then, taking
1 1(..0 q
=3 - = a_ _Az )
Y+ 2{1/) p(ﬂiaz—*_c )1/)}
1 1/.,0 ¢
== S (ins + 24, , 2.7
el (meia)eb e
Eq. (2.6) is seen to be equivalent to
L0 (P ('
h— =
ma (v) =7 (3)-
H= —qAﬂ+ﬁ(a +ioy), (2.8)
= —po: e 2p z y) .

where o’s are the Pauli matrices and 1 is the identity
matrix. It may be noted that Eq. (2.8) is analogous to the
Feshbach-Villars form [17] of the Klein-Gordon equation,

namely, (iﬁ% — H) ( i ) =0.
Let us now write

H=—pa’z+é+(’),

(2.9)

where £ and O are, respectively, the “even” and
“odd”parts of H in analogy with the Dirac electron the-
ory. Now, employing a Foldy-Wouthuysen-type transfor-
mation technique [18] one can successively eliminate the
odd part from the expression for H in Eq. (2.8). Carry-
ing out these transformations up to the third step (see
[11] for details) and collecting the terms of order up to
1/p* we get

[’”J_ ) [WJ_’ 2]

32cp

ithg |2 o 0AL | 0AL
" 32cpt TLPL g 0z +
_q9(4%)

c 8z |’

It is obvious that 1Zv+ and 1/;_ correspond, respectively, to
the wave functions associated with momenta +p in the z
direction; to see this, consider the free particle limit, i.e.,
A = (0,0,0). Since we are dealing with a beam moving
in the +2z direction, the scalar equation relevant for us is
given by, with ¥ = ¥4,
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31/)0 _
a HO"!)Oa
22 7t
~ _2 "l

Ho =~ A, —p+ —+ —== 8p
320p4 [7T_La [7r_L ’ A ]] (211)
_ihg PEI 0A.L 0A. .
" 32cp* [ L PL 75, 5. Pt

_g9(4})

c Oz )

It is interesting to see that the above “optical quan-
tum Hamiltonian” H, contains correction terms apart
from the terms obtained directly by “quantizing” (or
“wavizing” as is sometimes called) the classical optical
Hamiltonian —4/p2 — 72 — (g/c)A.. Actually o = ¢
of Eq. (2.6), for a quasiparaxial beam moving in the +z
direction, and what we have done is rewrite Eq. (2.6) as
an equation for the z evolution linear in 8/8z, with the
corresponding optical Hamiltonian expressed as a power
series in the parameter 1/p, so that successive approxi-
mations should lead to the study of paraxial and aberra-
tion aspects in a systematic way. It is clear that in the
paraxial case, when the terms beyond #2 /2p in Eq. (2.11)
can be neglected, the optical form of the nonrelativistic
Schrodinger equation, namely, Eq. (2.11), becomes the
corresponding Glaser equation [5].

III. THE LIE ALGEBRAIC APPROACH

Let us now consider a monoenergetic beam associated
with a wave function ¥o = 9o exp (—iEt/A) in the optical
representation obtained in Eq. (2.11). Formally integrat-
ing Eq. (2.11), we have
\I}O ('I'J_,Z” > zoutyt) = gO (Z”, Z',P) \IJO (7'_]__, Zl < zirnt) )

(3.1)

{exp< [ dz’l-{ozp))}

= exp{L( 2 ,p)}

with

éO (2”7 Z,; p)
(3.2)

where P stands for z ordering of the exponential and
L can be obtained using the Ma.gnus formula (see, e.g.,
[19]). The optical Hamiltonian Ho is seen to be man-
ifestly Hermitian. Hence the propagator Go is unitary.
The normalization [ [ dedy ¥} (ry,z)¥o(ri,z) = 1
will be preserved in the z evolution and we can take

<Q> (2) = <\Ilo(z) 1Q| ‘I’o(z)>
= / / dzdy T} (r1,2) QU (v, 2) (3.3)

as the average value of any observable @, represented by

the operator Q, in any chosen z plane; we are concerned
only with z planes in the field-free regions outside the
lens. Hereafter, we shall generally omit p in the notations
of Ho, Go, L, etc., with the understanding that it usually
corresponds to the mean (or design) momentum of the
quasiparaxial beam under consideration.

For any observable Q we have, with 2"
2! < Zin,

<Q> (")

> Zout and

= <§0 (z",z:l)lf Q6o (2", zl)> (")
<exp{ }Qexp{ll(z",z)}>( N
<exp{ E " 2" } Q> (2"

Il

==L s :
=<z EELA R >(z), (3.4)
k=0 :
where, for any operator F',
p00-0, F:0-[F.q].
:ﬁ’:kfz:[ﬁ',:l:’:k_lé] for k> 1. (3.5)

It is seen that the maps defined by Eq. (3.4), (Q) (2') —
(@) (2", for the transverse position and momentum op-
erators (r,,P ) represent the quantization of the corre-
sponding classical Lie maps (see [14] and [15]) and entail
the canonical rule of replacement of the Poisson brack-
ets by the commutator bracket {4, B} — (1/ik)[4, B]
and identifying the classical (ray optical) variables with
their quantum averages (7,07 /0z — (r1),{(P.)/p)
in the manner of Ehrenfest. One can easily recognize
Eq. (3.4) to be the optical representation of the Heisen-
berg picture.

IV. QUANTUM MECHANICS OF THE OPTICS
OF RELATIVISTIC CHARGED PARTICLES
WITH SCALAR WAVE FUNCTIONS

In the relativistic situation, when E — ¢q¢p =
++/(m?%c* + c?p?) , one can easily verify that the cor-
responding Klein-Gordon equation has the same form
as Eq. (2.6), except for the interpretation of p as the
relativistic momentum. To this end, one just has to
substitute p? = (1/c?) (E — q¢)*~m?c? in Eq. (2.6)
and observe that it is transformed into the time-
independent Klein-Gordon equation corresponding to en-
ergy E. Hence it is obvious that the above formalism
comprising Egs. (2.7)—(2.11) is also valid in the relativis-
tic case exactly in the same form. In other words, if one
disregards spin (if nonzero), the quantum theory of the
optics of charged-particles, described with scalar wave
functions, can be based on Egs. (2.7)-(2.11) with the
appropriate expression for p, i.e., with the relevant ap-
proximation in the range from p =~ /2m(F — q¢) to p
= 1/cy/(E — q¢)2 — m2c2. This explains the straight-
forward extension of Glaser’s semiclassical treatment of
the nonrelativistic quantum mechanics of electron optics
to the relativistic case based on the Klein-Gordon equa-
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tion (of course, as an approximation to a treatment based
on the Dirac equation) obtained by Ferwerda, Hoenders,
and Slump [9].

V. EXAMPLES OF APPLICATIONS

Let us now comnsider the application of the above the-
ory to the examples of quadrupole and axially symmet-
ric magnetic lenses. For the ideal magnetic quadrupole
lens, with A = (0,0, (g/2) (z*> — y?) ) in the lens region

.

(x)
()

1(p.)
1 /A
;(Py> Zout
1— 2
R 0
3272 f2
0 L g
A2
+321r2f§
f 6f 0
__X )
9672 f
1 w
0 7 (1 + 55
__X )
96n2 f2

with w = zout — zin, 1/f = —qgw/cp, and A = h/p, in the
thin lens approximation (retaining only terms up to first
order in w/f, assuming w < f), reproducing the famil-
iar transfer matrix for the quadrupole lens, except for the
presence of the quantum correction terms depending on
the de Broglie wavelength A. These quantum correction
terms precisely indicate how the classical (ray optics) pic-
ture breaks down in the extreme nonrelativistic limit of
very low energy beams when A > f.

For the axially symmetric magnetic lens, one has, un-
der the paraxial approximation,

3 ¥4
—p+ Lt (q zger 2ch(z)L )
242 B(2)B'(2) . R
Ho = +52 SB;CZP? (ro-PyL+P, 71) (5.4)

for Zin £ 2 < Zout
p+

where B’(z) = dB(z)/dz, L, is the usual z component
of the angular momentum operator, and the last term in
Ho for the lens region is the quantum correction term.
Correspondingly, for the lens region the £ operator be-
comes

for z < zin, 2> Zout ,

s 1
ENE{ wp+—pJ_+2frJ_—0L

+e(rL DL +Py - TL)} ) (5.5)

= TQL
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(2in < 2 < zout) and A = (0,0, 0) outside,
o+ 5 - (=2 - ) + $ (12— 72)
HO ~ for zin < 2 < Zout (5_1)

.2
-p+ % for z < zjn ,2 > Zout

in the paraxial approximation (retaining only terms up
to second order in 7 and P, ). Then the above map for
the lens action on the transverse position and momentum
components becomes

(x)
(y)

%(Iiz) , (5.2)
b)) .,
w(l-— i)
-
+161r2f
w(l— &)
0 Az‘*f
2
" 16w2 f ’ (53)
1— 3%
2 0
3272 f2
1+ 2
0 K
3272 f2
[
with
1_ /" e LBEE /z iz 183 (56
f 4c?p? 2ep 7
and
ﬁ2q2
= Gcai [B (zou)® — B (z;n)z] (5.7)

in the thin lens approximation which now entails, in ad-
dition to the assumption that w/f <« 1, also approx-
imating the z-ordered exponential in Eq. (3.2) by the
ordinary exponential. It is straightforward to see that,
under this approximation, the transfer matrix Try has
all the familiar aspects of the classical transfer matrix;
the quantum correction term €() in Eq. (5.5) is seen to
vanish under this approximation and only for a thick lens
can the quantum correction term in H, [see Eq. (5.4)] be
expected to contribute to L when the z-ordered exponen-
tial in Eq. (3.2) cannot be approximated by the ordinary
exponential.

It is to be noted that we have used the thin lens ap-
proximation in the above examples only for the purpose
of illustrating the way the formalism works. It is clear
that the basic formulas (3.2)—(3.5) are quite general and
valid in any context (i.e., for any lens field configuration
that supports a beam propagation). The only point to
be noted is that in the practical computations involving
thick lenses, the approximation of the expression for £
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and the extent of aberrations being taken into account
must be consistent. We hope to deal with this topic fur-
ther, with detailed examples, elsewhere.

VI. QUANTUM MECHANICS OF THE OPTICS
OF RELATIVISTIC ELECTRON BEAMS:
SPINOR ELECTRON OPTICS

For the electron (¢ = —e), the above formalism is valid
in the nonrelativistic case, with the spin ignored. In the
relativistic case, if the spin can be regarded as a specta-
tor degree of freedom or the electron wave function can
be considered to be a scalar (of course, approximately),
the above formalism based on the Klein-Gordon equa-
tion (i.e., with the appropriate relativistically correct ex-
pression for p) is adequate, as has been noted by Fer-
werda, Hoenders, and Slump [9]. If the spin is not disre-
garded, then one has to treat the quantum mechanics of
the optics of relativistic electron beams on the basis of
the Dirac equation, the proper equation for the electron.
Such a theory based on the Dirac equation, taking into
account the four-component spinor character of the wave
function and using an algebraic framework as above, al-
ready exists (see [10-12] for details). In this theory one
can show that in the optical representation the spinor
wave function of the quasimonoenergetic quasiparaxial
electron beam moving in the +z direction can be repre-
sented with two components exactly like for the positive
energy electron in the Foldy-Wouthuysen representation
of the Dirac theory. Then the corresponding relations
for ((r1),(B1) /P — (1), (P1) /P)ous 0 the case
of the magnetic quadrupole lens are

(@t = (@hin = 17 O=3)in + 2 (B,
W)ou = —%(azzxn + @hin+ 2D,
L (Bebout = — 3 (@hin = 123 (0s0bi
L Bain + o (B i,

A 1
= —m<0z$)in + ?(y)in
A
+47rfp

1,
;) <py)out

(azﬁ:E)in + %(p‘y)in ’ (6'1)
wherein we have omitted the w/f terms of the type oc-
curring in Eq. (5.3). The effect of spin is manifest in the
above relations; these spin-dependent terms are also seen
to be dominating only when A becomes comparable to f,
as for very low energy electron beams. Similar results
can be derived also for the axially symmetric magnetic
lens, based on the spinor electron optics. It should be
interesting to study the polarization aspects of the elec-
tron beam dynamics using such an optical formalism of
the Dirac theory.

We have mentioned here the case of the spinor electron
optics (see [10-12] for details) only by way of compari-
son [see Egs. (5.3) and (6.1)]. If the spin terms are ne-
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glected in Eq. (6.1), then it becomes identical to Eq. (5.3)
[with the w/f terms neglected, as in Eq. (6.1)] as is to
be expected since the formalism leading to Eq. (5.3) is
independent of whether p is relativistic, or nonrelativis-
tic, as already noted. Thus it is seen that the scalar
theory developed above on the basis of the nonrelativis-
tic Schrodinger equation (or the Klein-Gordon equation
for the relativistic case) is complementary to the spinor
electron optics and can be used for understanding the
quantum mechanics of the optics of nonrelativistic or rel-
ativistic charged particles with scalar wave functions cor-
responding to the cases of spin being zero or treated only
as a spectator degree of freedom. We have developed
above the theory for only the case of magnetic electron
lenses and to make it complete we have to extend it also
to the cases of electrostatic and other electromagnetic
lenses. We shall indicate briefly how this can be done in
the following, concluding, section.

VII. CONCLUSION:
EXTENSION OF THE THEORY
TO ELECTROSTATIC AND OTHER
ELECTROMAGNETIC LENSES

So far, we have developed an optical formalism of
the quantum theory of charged-particle beam transport
through magnetic lens systems, at the single-particle level
and disregarding spin (or, when nonzero, treating it as an
independent, spectator, degree of freedom, thus permit-
ting the wave function to be taken essentially as a scalar),
based on the Schrédinger and Klein-Gordon equations,
and shown how the quantum theory becomes the con-
ventional ray optical theory in the classical limit. This
treatment follows closely a similar theory available for
the spinor electron optics based on the Dirac equation,
relevant for understanding the quantum mechanics of the
optics of relativistic electron (or charged spin-1/2 parti-
cle) beams, and hence complements it.

It may be noted that, as already mentioned, the above
formalism would be complete only when it is extended
also to the cases of electrostatic and other electromag-
netic lenses. To this end, we outline in the following how
the above formalism can be generalized in a straightfor-
ward manner when the electric field is nonzero in the lens
region, i.e., ¢ (r) in Eq. (2.1) cannot be taken to be zero,
unlike for a magnetic lens.

Let us rewrite the Schrédinger and Klein-Gordon
equation (2.6) for the motion of the charged parti-
cle in an electromagnetic field, in general with p? =

(1/¢%) [(E — q¢)* — m?¢?], as
1/7.0 q v
5 (0 24) (Cy g 1)

- ( 7 (pzo— #3) (1)) ( -1 (iha%w+ 94.) ¢ ) , (7.1)

where § = +(1/c)VE? — m2c? is the magnitude of the
momentum of the beam particle in the field-free input
region (z < zi,) corresponding to the constant energy
E. Tt is clear that the constant 1/p is the expansion



parameter we need for the development of the theory in
the general case along the same lines as in the case of the
magnetic lens; in the field-free output region also p would
be the magnitude of the momentum, since the energy
FE is constant, though its components would have been
altered by the lens field. For a lens system supporting
beam propagation one should expect that p2 — p? <« H2.
Now define

(gi)zé(}‘j)(—%(m%ﬂng¢)~(T%

This transformation turns Eq. (7.1) into

1(.0 ¢ L
- (3 i) ()
2
L
2
L

(7.3)

which can be rearranged to give the desired optical rep-
resentation

20 (P _ Yy o PN
Zh8z<¢_)—H(¢_ s H=—-po,+&E+ 0O,
~ 1 ,. ~ .
O:Eﬁ(wi—{—pz)zay,

. . _. 1
with p? =52 —p? = c—2q¢(2E —q¢). (7.4)
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The expressions for p and p can be approximated de-
pending on how far relativistic the situation is; in the
nonrelativistic limit one can take p? ~ 2m(E — q¢), p ~
+v2mE, and p? =~ 2mgq¢. Again, one should note the
generality of the formalism.

It is clear that in the case of the magnetic lens, with ¢
=0, p = 0 and Eq. (7.4) coincides with Eq. (2.8). Now
Eq. (7.4), corresponding to any general electromagnetic
lens configuration, is of the same form as Eq. (2.8) and
hence a theory of the same type as above, with 1/p as
the expansion parameter, can be developed for dealing
with it. The quantum transfer map of a large system can
be constructed from the knowledge of the propagators of
the “local” blocks comprising it, as in the classical case
following the Lie methods (see, e.g., [15] for details).
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